
CS106A
Winter 2012-2013

Handout #10
January 16, 2013

Control Statements
_________________________________________________________________________________________________________

 Based on a handout by Eric Roberts and Mehran Sahami

This  handout  offers  some  additional  notes  on  Java’s  control  statements  (described  more  fully  in 
Chapter 4 of the textbook) that emphasize the important concepts.  It also describes a programming 
problem making use of various control structures.

To write programs, you need to understand control statements from two perspectives: you must have a 
holistic sense of when to use them and why, but you must also learn to understand the reductionistic  
details.  For this big-picture perspective, you can rely to a large extent on your experience from Karel:

• If you want to test a condition that requires an if statement in Karel, you need the if statement in 
Java.

• If you would use the while or for statement in Karel, you will presumably use the same statement 
form in Java.

The other holistic point that is essential about control statements is that the control line is conceptually 
independent from the body.  Thus, if you see a construct like

for (int i = 0; i < 10; i++) {          Control line
    statements          Body
}

the statements in the body will be repeated for each of the values of i from 0 to 9.  It doesn’t matter at 
all what those statements are.

Boolean data

Another important topic is that of the data type boolean, which is the means by which Java programs 
ask questions.  In Karel, the counterparts to  boolean are the conditions such as  frontIsClear() or 
beepersPresent().   In  Java,  the  range  of  available  conditions  is  much  richer  and  involves  the 
relational  operators  and  the  logical  operators  (both  covered  on  page  78  of  textbook).   The  most 
important lessons to take from these sections are:

• Watch out for confusing  = (assignment) with  == (equality).  This feature of several programming 
languages (including C, C++, and Java) has probably caused more bugs than any other.

• Be careful to understand both the interpretation and the evaluation order of the logical operators && 
(and), || (or), and ! (not).

The time you put into making sure you understand boolean data now will pay for itself many times 
over when the programs get more complicated later in the quarter.

- 1 -



Graphics library documentation

The  javadoc documentation for the ACM libraries is available under the “Links” section of the CS 
106A home page. Also, the methods in Figure 1 will help with the assignment.

Figure 1. Some useful methods in acm.graphics

Constructors
new GLabel(String text)  or  new GLabel(String text, double x, double y)

Creates a new GLabel object; the second form sets its location as well.
new GRect(double x, double y, double width, double height)

Creates a new GRect object; the x and y parameters can be omitted and default to 0.
new GOval(double x, double y, double width, double height)

Creates a new GOval object; the x and y parameters can be omitted and default to 0.
new GLine(double x1, double y1, double x2, double y2)

Creates a new GLine object connecting (x1, y1) and (x2, y2).

Methods common to all graphical object
void setLocation(double x, double y)

Sets the location of this object to the specified coordinates.
void move(double dx, double dy)

Moves the object using the displacements dx and dy.
double getWidth()

Returns the width of the object.
double getHeight()

Returns the height of the object.
void setColor(Color c)

Sets the color of the object.

Methods available for GRect and GOval only
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means outlined).
boolean isFilled()

Returns true if the object is filled.
void setFillColor(Color c)

Sets the color used to fill this object. If the color is null, filling uses the color of the object.

Methods available for GLabel only
void setFont(String fontName)

Sets the font, as described in Chapter 5.
double getAscent()

Returns the height above the baseline.

Checkerboard problem

Create a GraphicsProgram subclass that draws a checkerboard in the graphics window.  The number 
of rows and columns are given by the named constants NROWS and NCOLUMNS, and the squares should be 
sized so that they fill the vertical space.  For example, if NROWS and NCOLUMNS are both 8, running this 
program should produce the following output:

- 2 -



Solution to the Checkerboard problem

/*
 * File: Checkerboard.java
 * -----------------------
 * This program draws a checkerboard.
 */

import acm.graphics.*;
import acm.program.*;

/*
 * This class draws a checkerboard on the graphics window.
 * The size of the checkerboard is specified by the
 * constants NROWS and NCOLUMNS, and the checkboard fills
 * the vertical space available.
 */

public class Checkerboard extends GraphicsProgram {

/* Number of rows */
private static final int NROWS = 8;

/* Number of columns */
private static final int NCOLUMNS = 8;

/* Runs the program */
public void run() {

            /* Determine the size of a single square. */
int sqSize = getHeight() / NROWS;

for (int i = 0; i < NROWS; i++) {
for (int j = 0; j < NCOLUMNS; j++) {

int x = j * sqSize;
int y = i * sqSize;
GRect sq = new GRect(x, y, sqSize, sqSize);
sq.setFilled(((i + j) % 2) != 0);
add(sq);

}
}

}
}

How would you change this program so that if the window is taller than it is wide, you can draw a 
checkerboard that doesn't overflow the window?

- 3 -


